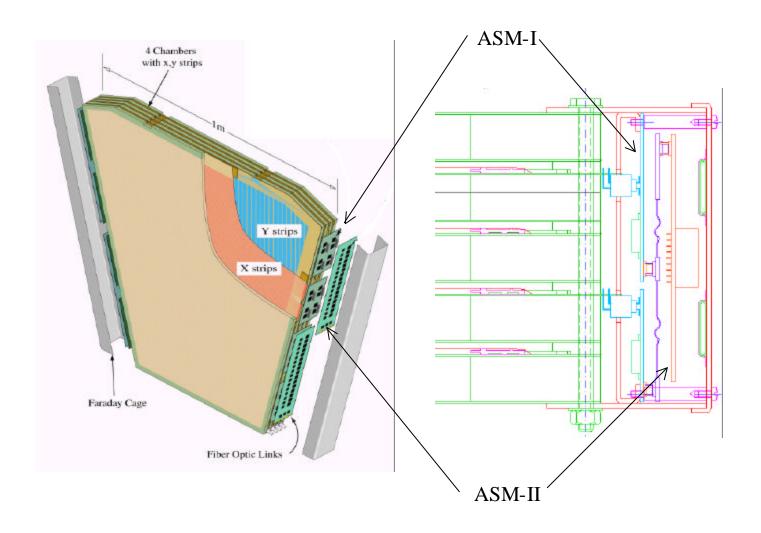
Status of the Front End Electronics for the ATLAS Cathode Strip Chambers

P. O'Connor May 5, 2001

Outline

- On-detector boards
- Off-detector boards
- ASICs needed for on-detector boards
- Low voltage power, cabling
- Faraday cage
- Summary

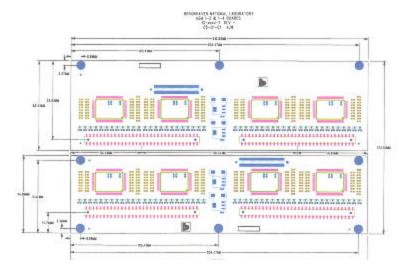
Board Design for the CSC Electronics


On-detector

- •ASM-1
- •ASM-2

Off-detector

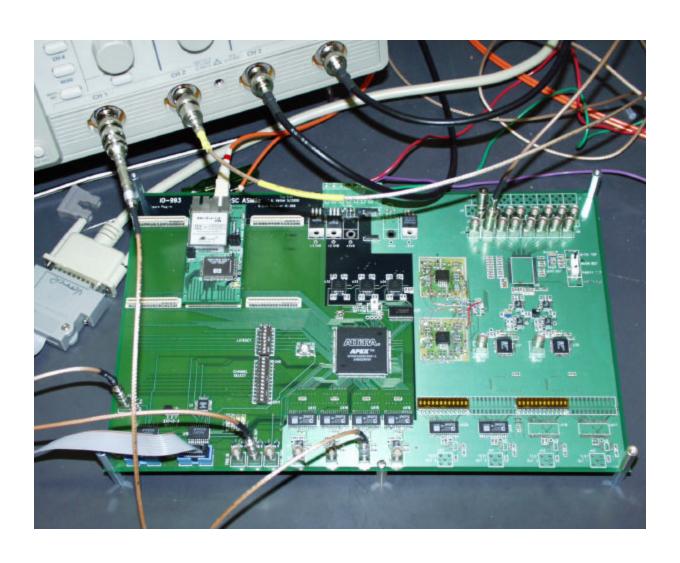
- •Sparsifier/ROD
- •Concentrator
- •Support electronics boards


On-chamber electronics location

ASM-1 board

- Function: low-noise amplification and pulse shaping of the chamber signals
- No. of channels: 48
- No. of boards required: 640 (for 32 chambers)
- 60 x 210 mm board, 3.4W, plugs into chamber
- Design responsibility: BNL Instrumentation
- 12-channel prototypes tested with chamber, in beam, work fine
- 5 versions of this board plus flex connector in layout
- Milestones:

_	Module 0 fabrication	07/01
_	Module 0 beam test	09/01
_	Final Design Review	03/03
_	PRR	07/03
_	Production	08/03



ASM-2 board

- Function: analog memory, digitization, optical link
- No. of channels: 192
- No. of boards required: 160
- 120 x 430 mm board, 26W
- 50% more channels than LARG FEB in 1/4 the area
- Design responsibility: BNL Instrumentation
- 12-channel prototype working on bench (ASM-2a)
 - Measure gain, linearity, noise, pedestal dispersion
 - Verify operation of G-link
 - Verify > 5MHz Read Clock rate
 - Verify interface to preamp/shaper
 - Implement trigger
- 96-channel version (ASM-2b) in design, for 9/01 beamtest
- Milestones:

_	ASM-2b fabrication	07/01
_	ASM-2b beam test	09/01
_	Final Design Review	03/03
_	PRR	07/03
_	Production	08/03

ASM-2 prototype

ROD

- Functions:
 - Generate control signals and transmit to chambers
 - Receive and process raw chamber data
 - Assemble events and transmit to Concentrator
 - Calibration and monitoring
 - ROD serves 2 chambers (1920 channels, 12.8 Gbit/s)
- Design responsibility: UCI
- No. of boards required: 16
- 9U VME plus 220 mm Transition Module, 100W
- Modular design using pluggable DSP-based GPU:
 - 70 x 70 mm, 3W
 - > 100 Mword/s data BW
 - Component cost ~ \$300
 - 12 GPUs per ROD
- Status:
 - GPU: working prototype on hand
 - ROD: motherboard layout started 5/1/01
- Milestones:

_	Prelim. Design Review	05/01
_	First prototype in hand	08/01
_	Integration with ASM-2	04/02
_	Final design review	10/02
_	PRR	07/03

Concentrator

- Function: accept fully processed data from 16 (8) RODs, build ATLAS standard events, transmit to Trigger/DAQ
- Design responsibility: UCI
- No. required: 1 (2)
- Same board as ROD, different firmware and software
- Will be available same timeframe as ROD

Off-detector Support Electronics and Software

Support Electronics

- Function: interface CSC system to LHC and L1 timing, ATLAS Trigger/DAQ, physically support and supply power to RODs and Concentrators
- Design responsibility: UCI
- 1 9U VME crate per endcap
 - 16 RODs
 - 1 (2) Concentrator(s)
 - 1 TIM
 - 1 ROD Crate Controller
- Milestones:

_	Final DR	10/02
_	PRR	07/03

Software

- UCI responsibility
- Prelim. Design Review 08/03, Final 04/04

ASICs for CSC Electronics

CHIP		TYPE	FOUNDRY
•	P/S	analog	Agilent
•	SCA	mixed	DMILL
•	MUX	digital	TBD
•	POS. VREG	power	RHBip1

Preamp/Shaper (P/S)

- Technology: Agilent 0.5 um CMOS
- Location: ASM-1
- Function: 12-channel preamplifier and 7-pole shaper
- Design responsibility: BNL Instrumentation
- No. of chips required: 5,120 (full scope of 64 chambers)
- MPW runs: 3
- Tested with full size chambers in beam
- Radiation testing: preliminary ionizing test to 1 Mrad, very encouraging result
- Milestones:

_	Beam test	09/01
_	Final DR and PRR	10/01
_	Production	12/01

P/S Yield Issue

- Inconsistent yield on 3 MPW runs despite identical mask layout:
 - 1st run 2Q 1999: 45%
 - 2nd run 1Q 2000: 97%
 - 3rd run 1Q 2001: 84%
- All failures involve self-bias circuit (1 or 2 of 16 fail randomly) and are correctable by external forcing
- Suspected cause is pinholes in large on-chip decoupling capacitors
- Corrective actions:
 - External Design Rule Check by vendor
 - Simulate impact of removing on-chip caps
 - Revise design and submit for 2 more MPW runs
 - May delay PRR
- Minimum production run is expected to produce 14,000 die, so low yield is not a serious problem

SCA

- Technology: DMILL
- Location: ASM-2
- Function: analog memory
- Design responsibility: LARG
- No. chips required: 5,120 for full scope (64 chambers)
- This is the same chip used in LARG FEB
- Design was modified at our request to allow pinselectable "MUON mode"
- Effectively increases the readout rate by X6
 - 4 channels x 3 gains => 12 channels
 - Duty cycle $50\% \Rightarrow 100\%$ per SCA
 - Read clock 5 MHz => 6.67 MHz
- Tested in MUON mode in lab, 3/01-5/01
- LARG in control of radiation qualification, procurement, and production testing
- Production forseen for Jan. 02

MUX

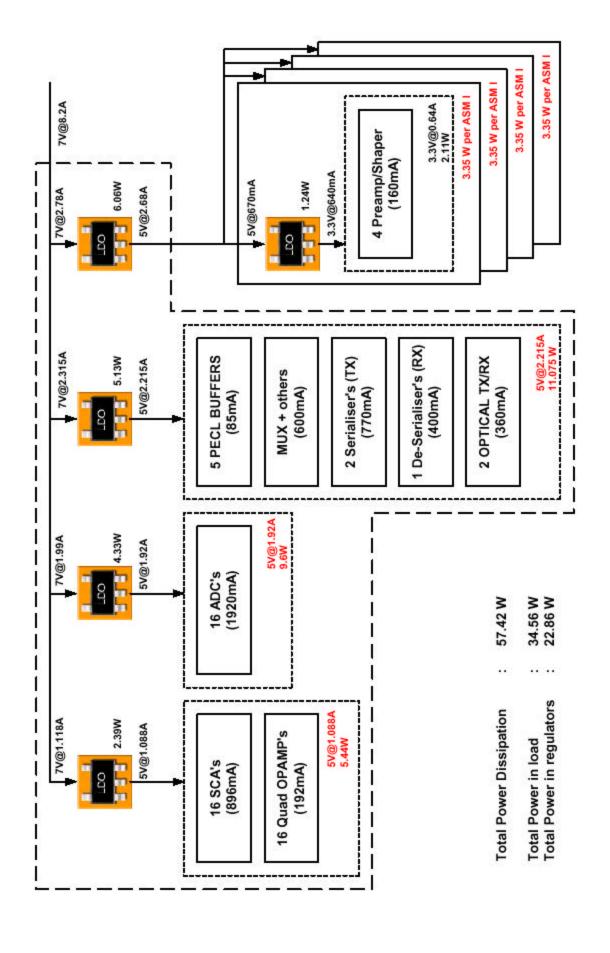
• Location: ASM-2

• Function: data concentration between ADC and G-link

Technology: TBD

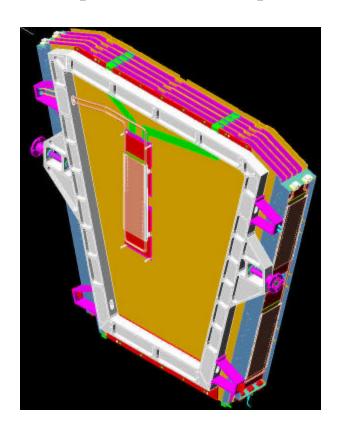
• No. of chips required: TBD

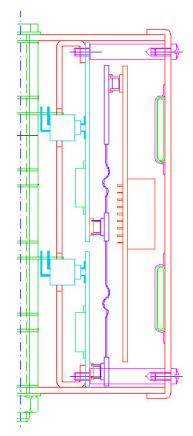
• Milestones:


Start design 10/01
MPW fab 02/02
Final DR 10/02?

Voltage regulator

- LHC4913 positive voltage regulator being developed in framework of RD-49 by ST Microelectronics Catania
- Location: ASM-1 and ASM-2
- Quantities required: 640 ea. 5V and 3.3V (for 32 chambers)


Low Voltage Power and Cabling


- Design for full scope (64 chambers)
- Uncertainties:
 - Power supply location
 - Cable run details
 - Local regulator characteristics
- Working assumptions:
 - Space for LV supplies available on UX15 floor
 - Use LARG-like supplies if neutron flux too high for standard DC-DC converters
 - 25m run to patch panel on outside of endcap wheel
 - 12 m from edge of endcap to chamber pigtail
- Total electronics power: 18400 W (2630A @ 7V)
- Cabling: 64 pairs AWG 4, 480 cm², 1000 kg
- 100 W dissipated per cable, 6400 W total for full scope
- Fiber optic cables
 - 960 fibers from USA15 (120m run)
 - 90 cm² cross section, 860 kg

Faraday Cage

- Provides shielding, ground, cooling, and mechanical support for ASM-1 and ASM-2
- 2 FCs per chamber
- ASM-1 and ASM-2 boards require liquid cooling
 - Cooling plate with thermally conductive pads
- Design is in preliminary stage
- Space is constrained
- Need to finalize board layout, cable harness, and connector details
- Y-strip readout needs separate mechanics

Summary

- 2 of 3 ASICs are ready for production
- Schedule risk if MUX ASIC requires more than one iteration
- We rely on timely solution of ST voltage regulator problems
- Manpower concerns
 - ASM-2 design
 - FC
 - Test DAQ
 - Radiation qualification